增材制造

了解真空热处理在金属增材制造领域的潜力。进入金属3D打印的世界!

Vacuum sintering of stainless steels: how to choose the right sintering atmosphere

Stainless-steel components represent a large part of the market for sintered parts; they can be produced using many technologies and have a wide variety of applications such as automotive, biomedical industries, mechanical and fashion.

In this article we are going to discuss how sintering parameters, and especially the sintering atmosphere, may affect the quality achievable from sintered stainless-steel parts.
We’ll analyse the three gas options, and we’ll see that in some circumstances there are interesting alternatives that can fit your needs. Read on!

阅读文章...

发布日期 9/11/2020
类别: 应用

How to properly debind parts produced by metal additive manufacturing

Additive manufacturing is a manufacturing technology that is gaining more and more ground among metallurgists. The process involves all the techniques used to create 3D metal objects from a digital design.

The notable increase in the world of metal additive manufacturing of the use of methods such as the Metal Injection Molding (MIM), the Binder Jetting (BJ) and the Fused Deposition Modeling (FDM), prompted TAV VACUUM FURNACES to design and install a vacuum furnace for thermal debinding in its Research and Development laboratory, in order to experiment the best solutions for this delicate post-production phase.

Let's find out what debinding is, how it is obtained and above all which are the most suitable tools to create high quality components without risking contamination.

阅读文章...

发布日期 6/12/2020
类别: 工业应用
标签: , 增材制造

Medical-dental applications: 3 benefits of vacuum heat treatments applied to 3D printing

Additive manufacturing and vacuum heat treatments are technologies capable of making important progress in various sectors, including dentistry applications.

In this case study carried out in collaboration with industry and Italian academy excellences, we will see the role of 3D printing in the medical-dental field and discover the benefits of post-printing vacuum heat treatments.

The final results are of a precision never known before with the more traditional procedures, while the mechanical and geometric advantages are innumerable.

阅读文章...

发布日期 2/18/2020
类别: 应用

Learn all about coating the additive manufactured Titanium64 [2/2]

In the previous article we’ve seen how AlTiN thin film deposition process was carried out via reactive Physical Vapor Deposition High-Power Impulse Magnetron Sputtering (PVD HiPIMS) to coat Ti6Al4V substrates, realized via Selective Laser Melting (SLM).
Two different SLM process conditions were employed for modifying the obtained part surface morphology and, later, the samples were heat-treated under high vacuum.

Do not miss this in-depth investigation and the conclusions at the end, we’ll provide you all the information to get the most out of these three technologies.

阅读文章...

发布日期 1/21/2020
类别: 应用

Learn all about coating the additive manufactured Titanium64 [1/2]

Among the industrial AM technologies, selective laser melting (SLM) is the most widespread, thanks to its process stability and its favorable ratio between costs and part quality. However, selective laser melted products require coatings for functionalizing the surface with extra properties and in this article we’ll see how thin film deposition process can be carried out to coat titanium substrates.

Is it possible to coat the titanium alloy substrates to obtain a good improvement of the mechanical surface features?
What’s the role of vacuum heat treatments on additive manufactured parts?
Can the laser scanning paths affect the resulting adhesion of the coatings?

阅读文章...

您是否想要了解本篇博客谈到的某个话题?

如果您对某篇文章有任何看法或有任何问题咨询,我们都非常欢迎。